SPPL: Probabilistic Programming with Fast Exact Symbolic Inference
Fri 25 Jun 2021 21:30 - 21:35 at PLDI-A - Talks 5A: Machine Learning and Probabilistic Programming
We present the Sum-Product Probabilistic Language (SPPL), a new probabilistic programming language that automatically delivers exact solutions to a broad range of probabilistic inference queries. SPPL translates probabilistic programs into {\em sum-product expressions}, a new symbolic representation and associated semantic domain that extends standard sum-product networks to support mixed-type distributions, numeric transformations, logical formulas, and pointwise and set-valued constraints. We formalize SPPL via a novel translation strategy from probabilistic programs to sum-product expressions and give sound exact algorithms for conditioning on and computing probabilities of events. SPPL imposes a collection of restrictions on probabilistic programs to ensure they can be translated into sum-product expressions, which allow the system to leverage new techniques for improving the scalability of translation and inference by automatically exploiting probabilistic structure. We implement a prototype of SPPL with a modular architecture and evaluate it on benchmarks the system targets, showing that it obtains up to 3500x speedups over state-of-the-art symbolic systems on tasks such as verifying the fairness of decision tree classifiers, smoothing hidden Markov models, conditioning transformed random variables, and computing rare event probabilities.
Fri 25 JunDisplayed time zone: Eastern Time (US & Canada) change
09:00 - 09:40 | |||
09:00 5mTalk | DeepCuts: A Deep Learning Optimization Framework for Versatile GPU Workloads PLDI Wookeun Jung Seoul National University, Thanh Tuan Dao Seoul National University, Jaejin Lee Seoul National University DOI | ||
09:05 5mTalk | Provable Repair of Deep Neural Networks PLDI Matthew Sotoudeh University of California at Davis, Aditya V. Thakur University of California at Davis DOI Pre-print Media Attached | ||
09:10 5mTalk | DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI Kevin Ellis Cornell University, Lionel Wong Massachusetts Institute of Technology, Maxwell Nye Massachusetts Institute of Technology, Mathias Sablé-Meyer PSL University; Collège de France; NeuroSpin, Lucas Morales Massachusetts Institute of Technology, Luke Hewitt Massachusetts Institute of Technology, Luc Cary Massachusetts Institute of Technology, Armando Solar-Lezama Massachusetts Institute of Technology, Joshua B. Tenenbaum Massachusetts Institute of Technology DOI | ||
09:15 5mTalk | Specification Synthesis with Constrained Horn Clauses PLDI Sumanth Prabhu TCS Research, Grigory Fedyukovich Florida State University, Kumar Madhukar TCS Research, Deepak D'Souza IISc Bangalore DOI | ||
09:20 5mTalk | Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming PLDI Guillaume Baudart Inria, Javier Burroni University of Massachusetts Amherst, Martin Hirzel IBM Research, Louis Mandel IBM Research, USA, Avraham Shinnar IBM Research DOI | ||
09:25 5mTalk | Sound Probabilistic Inference via Guide Types PLDI Di Wang Carnegie Mellon University, Jan Hoffmann Carnegie Mellon University, Thomas Reps University of Wisconsin DOI | ||
09:30 5mTalk | SPPL: Probabilistic Programming with Fast Exact Symbolic Inference PLDI Feras Saad Massachusetts Institute of Technology, Martin C. Rinard Massachusetts Institute of Technology, Vikash K. Mansinghka Massachusetts Institute of Technology DOI | ||
09:35 5mTalk | Quantitative Analysis of Assertion Violations in Probabilistic Programs PLDI Jinyi Wang Shanghai Jiao Tong University, Yican Sun Peking University, Hongfei Fu Shanghai Jiao Tong University, Krishnendu Chatterjee IST Austria, Amir Kafshdar Goharshady Hong Kong University of Science and Technology DOI |
21:00 - 21:40 | |||
21:00 5mTalk | DeepCuts: A Deep Learning Optimization Framework for Versatile GPU Workloads PLDI Wookeun Jung Seoul National University, Thanh Tuan Dao Seoul National University, Jaejin Lee Seoul National University DOI | ||
21:05 5mTalk | Provable Repair of Deep Neural Networks PLDI Matthew Sotoudeh University of California at Davis, Aditya V. Thakur University of California at Davis DOI Pre-print Media Attached | ||
21:10 5mTalk | DreamCoder: Bootstrapping Inductive Program Synthesis with Wake-Sleep Library Learning PLDI Kevin Ellis Cornell University, Lionel Wong Massachusetts Institute of Technology, Maxwell Nye Massachusetts Institute of Technology, Mathias Sablé-Meyer PSL University; Collège de France; NeuroSpin, Lucas Morales Massachusetts Institute of Technology, Luke Hewitt Massachusetts Institute of Technology, Luc Cary Massachusetts Institute of Technology, Armando Solar-Lezama Massachusetts Institute of Technology, Joshua B. Tenenbaum Massachusetts Institute of Technology DOI | ||
21:15 5mTalk | Specification Synthesis with Constrained Horn Clauses PLDI Sumanth Prabhu TCS Research, Grigory Fedyukovich Florida State University, Kumar Madhukar TCS Research, Deepak D'Souza IISc Bangalore DOI | ||
21:20 5mTalk | Compiling Stan to Generative Probabilistic Languages and Extension to Deep Probabilistic Programming PLDI Guillaume Baudart Inria, Javier Burroni University of Massachusetts Amherst, Martin Hirzel IBM Research, Louis Mandel IBM Research, USA, Avraham Shinnar IBM Research DOI | ||
21:25 5mTalk | Sound Probabilistic Inference via Guide Types PLDI Di Wang Carnegie Mellon University, Jan Hoffmann Carnegie Mellon University, Thomas Reps University of Wisconsin DOI | ||
21:30 5mTalk | SPPL: Probabilistic Programming with Fast Exact Symbolic Inference PLDI Feras Saad Massachusetts Institute of Technology, Martin C. Rinard Massachusetts Institute of Technology, Vikash K. Mansinghka Massachusetts Institute of Technology DOI | ||
21:35 5mTalk | Quantitative Analysis of Assertion Violations in Probabilistic Programs PLDI Jinyi Wang Shanghai Jiao Tong University, Yican Sun Peking University, Hongfei Fu Shanghai Jiao Tong University, Krishnendu Chatterjee IST Austria, Amir Kafshdar Goharshady Hong Kong University of Science and Technology DOI |